New regular black hole solutions and other electrically charged compact objects with a de Sitter core and a matter layer

Author:

Masa Angel D. D.1,de Oliveira Enesson S.1,Zanchin Vilson T.1

Affiliation:

1. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, São Paulo, Brazil

Abstract

The main objective of this work is the construction of regular black hole solutions in the context of the Einstein–Maxwell theory. The strategy is to match an interior regular solution to an exterior electrovacuum solution. With this purpose, we first write explicitly the Einstein field equations for the interior regular region. We take an electrically charged nonisotropic fluid, which presents spherical symmetry and a de Sitter type equation of state, where the radial pressure [Formula: see text] is equal to the negative of energy density [Formula: see text], [Formula: see text]. Then, two solutions for the Einstein equations are built, a regular interior solution for the region with matter satisfying a de Sitter equation of state, and an external solution for the region outside the matter, that corresponds to the Reissner–Nordström metric. To complete the solution we apply the Darmois–Israel junction conditions with a timelike thin shell at the matching surface. It is assumed that the matching surface is composed by a thin shell of matter, i.e. a surface layer in the form of a perfect fluid obeying a barotropic equation of state, [Formula: see text] and [Formula: see text] being the intrinsic pressure and energy density of the shell, respectively, and [Formula: see text] a constant parameter. We show that there are electrically charged regular black hole solutions and other compact objects for specific choices of [Formula: see text] and of the other parameters of the model. Some properties the objects are investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3