What is a reduced boundary in general relativity?

Author:

Battista Emmanuele12ORCID,Esposito Giampiero34ORCID

Affiliation:

1. Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

2. Institute for Nuclear Physics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

3. Dipartimento di Fisica “Ettore Pancini”, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy

4. Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy

Abstract

The concept of boundary plays an important role in several branches of general relativity, e.g. the variational principle for the Einstein equations, the event horizon and the apparent horizon of black holes, the formation of trapped surfaces. On the other hand, in a branch of mathematics known as geometric measure theory, the usefulness has been discovered long ago of yet another concept, i.e. the reduced boundary of a finite-perimeter set. This paper proposes therefore a definition of finite-perimeter sets and their reduced boundary in general relativity. Moreover, a basic integral formula of geometric measure theory is evaluated explicitly in the relevant case of Euclidean Schwarzschild geometry for the first time in the literature. This research prepares the ground for a measure-theoretic approach to several concepts in gravitational physics, supplemented by geometric insight. Moreover, such an investigation suggests considering the possibility that the in–out amplitude for Euclidean quantum gravity should be evaluated over finite-perimeter Riemannian geometries that match the assigned data on their reduced boundary. As a possible application, an analysis is performed of the basic formulae leading eventually to the corrections of the intrinsic quantum mechanical entropy of a black hole.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3