Affiliation:
1. Vaasa University of Applied Sciences, Wolffintie 30, 65200 Vaasa, Finland
Abstract
As an attempt to realize Wheeler’s “it-from-bit proposal” that physics should be reduced to simple yes–no questions, we consider a model of loop quantum gravity, where the only allowed values of the quantum numbers [Formula: see text] at the punctures [Formula: see text] of the spin network on the spacelike two surfaces of spacetime are [Formula: see text] and [Formula: see text]. When [Formula: see text], the puncture is in the vacuum, and it does not contribute to the area of the two surface, whereas when [Formula: see text], the puncture is in an excited state, and the allowed values of the associated quantum number [Formula: see text] are [Formula: see text] and [Formula: see text]. As a consequence, the spin network used as a model of spacetime is analogous to a system of particles with spin [Formula: see text], and every puncture carries exactly one bit of information. When applied to spacetimes with horizon, our model enables us to find an explicit expression for the partition function of spacetime. Using this partition function we may, among other things, obtain the Bekenstein–Hawking entropy law for black holes. When applied to cosmological models with horizon, the partition function predicts a cosmic phase transition in the early universe, where the cosmological constant went through a dramatic decrease and the matter of the universe was created out of the vacuum.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A possible quantum effect of gravitation;General Relativity and Gravitation;2024-06
2. Quantum gravity in flat spacetime;International Journal of Modern Physics D;2024-04-30
3. The end of spacetime;International Journal of Modern Physics A;2023-12-28
4. Minimal model for the Bekenstein-Hawking entropy;Physical Review D;2022-09-02
5. Black hole in a heat bath;International Journal of Modern Physics D;2022-07-15