Affiliation:
1. Department of Physics, BITS Pilani Hyderabad, Hyderabad 500078, Telangana State, India
2. Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
Abstract
According to the third law of Thermodynamics, it takes an infinite number of steps for any object, including black holes, to reach zero temperature. For any physical system, the process of cooling to absolute zero corresponds to erasing information or generating pure states. In contrast with the ordinary matter, the black hole temperature can be lowered only by adding matter–energy into it. However, it is impossible to remove the statistical fluctuations of the infalling matter–energy. The fluctuations lead to the fact that the black holes have a finite lower temperature and, hence, an upper bound on the horizon radius. We make an estimate of the upper bound for the horizon radius which is curiously comparable to Hubble horizon. We compare this bound with known results and discuss its implications.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献