Affiliation:
1. IUCAA, Pune University Campus, Ganeshkhind, Pune 411007, India
Abstract
The equations of motion for matter fields are invariant under the shift of the matter Lagrangian by a constant. Such a shift changes the energy–momentum tensor of matter by [Formula: see text]. In the conventional approach, gravity breaks this symmetry and the gravitational field equations are not invariant under such a shift of the energy–momentum tensor. We argue that until this symmetry is restored, one cannot obtain a satisfactory solution to the cosmological constant problem. We describe an alternative perspective to gravity in which the gravitational field equations are [Gab - κTab]nanb = 0 for all null vectors na. This is obviously invariant under the change [Formula: see text] and restores the symmetry under shifting the matter Lagrangian by a constant. These equations are equivalent to Gab = κTab + Cgab, where C is now an integration constant so that the role of the cosmological constant is very different in this approach. The cosmological constant now arises as an integration constant, somewhat like the mass M in the Schwarzschild metric, the value of which can be chosen depending on the physical context. These equations can be obtained from a variational principle which uses the null surfaces of space–time as local Rindler horizons and can be given a thermodynamic interpretation. This approach turns out to be quite general and can encompass even the higher order corrections to Einstein's gravity and suggests a principle to determine the form of these corrections in a systematic manner.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献