Temporal evolution of isolated pulsars; Age-Tau problem

Author:

Kutukcu Pinar1,Ankay Askin1

Affiliation:

1. Department of Physics, Bogazici University, Istanbul, Turkey

Abstract

In this work, we examine the evolution of a sample of isolated pulsars connected to Galactic supernova remnants (SNRs) five of which have measured braking indices. For the pulsars in our sample without measured braking index values we have calculated the estimated braking indices adopting the supernova remnant ages as the real ages of pulsar-SNR pairs assuming short initial spin periods (10–30 ms). Some of these pulsars exhibit at least one order of magnitude differences between the characteristic pulsar ages and the ages of the SNRs they are physically connected to. We adopt an exponential B-decay model, which is the decrease in the surface dipole magnetic field component perpendicular to the spin axis, in order to explain the evolutions of such pulsars on the spin period versus the spin period change diagram. The decay can be either due to a decrease in the angle between the spin axis and the magnetic axis and/or due to a decay in the surface dipole magnetic field itself. Based on a previous work by Ankay et al. on the X-ray pulsar 1E1207-5209 we show that there are some other young isolated pulsars which experience B-decay as the predominant effect throughout their observational lifetimes. As compared to ordinary radio pulsars the magneto-dipole radiation torques are not so effective for such pulsars and the characteristic decay times are significantly shorter (about three orders of magnitude). Assuming simple exponential evolutionary tracks we give possible physical interpretations for this new class of neutron stars by examining the observational data of each pulsar-SNR pair.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Radio Continuum and Polarization Study of SNR G57.2+0.8 Associated with Magnetar SGR 1935+2154;The Astrophysical Journal;2018-01-05

2. New long-term braking index measurements for glitching pulsars using a glitch-template method;Monthly Notices of the Royal Astronomical Society;2016-11-29

3. Numerically fitting the electron Fermi energy and the electron fraction in a neutron star;International Journal of Modern Physics D;2016-01

4. Constraining the braking indices of magnetars;Monthly Notices of the Royal Astronomical Society;2015-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3