The gamma-ray spectral feature from Kaluza–Klein dark matter annihilation and its observability

Author:

Tsuchida Satoshi1,Mori Masaki2

Affiliation:

1. Department of Physics, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi–ku, Osaka City, Osaka, 558–8585, Japan

2. Department of Physical Sciences, Ritsumeikan University, Kusatsu 525–8577, Shiga, Japan

Abstract

The theory of universal extra dimensions involves Kaluza–Klein (KK) particles. The lightest KK particle (LKP) is one of the good candidates for cold dark matter. Annihilation of LKP dark matter in the Galactic halo produces high-energy gamma-rays. The gamma-ray spectrum shows a characteristic peak structure around the LKP mass. This paper investigates the observability of this peak structure by near-future detectors taking account of their energy resolution and calculates the expected energy spectrum of the gamma-ray signal. Then, by using the High-Energy Stereoscopic System (HESS) data, we set some constraints on the boost factor, which is a product of the annihilation cross-section relative to the thermal one and an uncertain factor dependent on the substructure of the LKP distribution in the Galactic halo, for each LKP mass. The resulting upper limit on the boost factor is in the range from 1 to 30. The constraints can be regarded as comparable with the results of previous work for gamma-ray and electron–positron observation. However, the observational data for the TeV or higher energy region are still limited, and the possible LKP signal is not conclusive. Thus, we expect near-future missions with better sensitivity will clarify whether the LKP dark matter should exist or not.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3