Numerical study of toroidal magnetic field on the self-gravitating protoplanetary disks

Author:

Ghanbarnejad Hanifeh1,Ghasemnezhad Maryam1

Affiliation:

1. Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, we study the self-gravitating accretion disks by considering the toroidal component of magnetic field, [Formula: see text] and wind/outflow in the flow and also investigate the effect of two parameters, [Formula: see text] and [Formula: see text] corresponding to magnetic field on the latitudinal structure of such accretion disks. The cooling of the disk is parameterized simply as, [Formula: see text] (where [Formula: see text] is the internal energy and [Formula: see text] is the cooling timescale and [Formula: see text] is a free constant) and the heating rate is decomposed into two components, magnetic field and viscosity dissipations. We have shown that when the toroidal magnetic field becomes stronger, the heating process (viscous and resistivity) and the radiative cooling rate increase. Ohmic heating is much bigger than viscous heating and cooling, so we must consider the role of the magnetic field in the energy equation. Our numerical solutions show that the thickness of the disk decreases with strong toroidal component of magnetic field. The magnetic field leads to production of the outflow in the low latitude. So, by increasing the toroidal component of the magnetic field, the regions which belong to inflow decrease and the disk is cooled.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The dynamics of magnetized viscous-resistive ADAFs under a self-similar evolution;International Journal of Modern Physics D;2022-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3