Fresh look at the effects of gravitational tidal forces on a freely-falling quantum particle

Author:

Hammad F.123,Sadeghi P.1,Fleury N.4,Leblanc A.4

Affiliation:

1. Department of Physics and Astronomy, Bishop’s University, 2600 College Street, Sherbrooke, QC, J1M 1Z7 Canada

2. Physics Department, Champlain College-Lennoxville, 2580 College Street, Sherbrooke, QC, J1M 0C8 Canada

3. Département de Physique, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4 Canada

4. Department of Physics, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9 Canada

Abstract

In this paper, we take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field. We derive the corresponding Schrödinger equation for the particle by starting from the fully relativistic Klein–Gordon equation in order (i) to briefly discuss the issue of the equivalence principle and (ii) to be able to compare the relativistic terms in the equation to the tidal-force terms. To the second order of the nonrelativistic approximation, the resulting Schrödinger equation is that of a simple harmonic oscillator in the horizontal direction and that of an inverted harmonic oscillator in the vertical direction. Two methods are used for solving the equation in the vertical direction. The first method is based on a fixed boundary condition, and yields a discrete-energy spectrum with a wavefunction that is asymptotic to that of a particle in a linear gravitational field. The second method is based on time-varying boundary conditions and yields a quantized-energy spectrum that is decaying in time. Moving on to a freely-falling reference frame, we derive the corresponding time-dependent energy spectrum. The effects of tidal forces yield an expectation value for the Hamiltonian and a relative change in time of a wavepacket’s width that are mass-independent. The equivalence principle, which we understand here as the empirical equivalence between gravitation and inertia, is discussed based on these various results. For completeness, we briefly discuss the consequences expected to be obtained for a Bose–Einstein condensate or a superfluid in free fall using the nonlinear Gross–Pitaevskii equation.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3