Weak measurement effect on optimal estimation with lower and upper bound on relativistic metrology

Author:

Rangani Jahromi H.1

Affiliation:

1. Physics Department, Faculty of Sciences, Jahrom University, P. B. 7413188941, Jahrom, Iran

Abstract

We address the quantum estimation of parameters encoded into the initial state of two modes of a Dirac field described by relatively accelerated parties. By using the quantum Fisher information (QFI), we investigate how the weak measurements performed before and after the accelerating observer, affect the optimal estimation of information encoded into the weight and phase parameters of the initial state shared between the parties. Studying the QFI, associated with weight parameter [Formula: see text], we find that the acceleration at which the optimal estimation occurs may be controlled by weak measurements. Moreover, it is shown that the post-measurement plays the role of a quantum key for manifestation of the Unruh effect. On the other hand, investigating the phase estimation optimization and assuming that there is no control over the initial state, we show that the weak measurements may be utilized to match the optimal [Formula: see text] to its predetermined value. Moreover, in addition to determination of a lower bound on the QFI with the local quantum uncertainty (LQU), we unveil an important upper bound on the precision of phase estimation in our relativistic scenario, given by the maximal steered coherence (MSC). We also obtain a compact expression of the MSC for general X states.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3