Dynamical spatial curvature as a fit to Type Ia supernovae

Author:

Desgrange Célia1,Heinesen Asta2,Buchert Thomas1

Affiliation:

1. Univ Lyon, ENS de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Lyon F-69007, France

2. School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Abstract

Few statements in cosmology can be made without assuming a cosmological model within which to interpret data. Statements about cosmic acceleration are no exception to this rule, and the inferred positive volume acceleration of our universe often quoted in the literature is valid in the context of the standard Friedmann–Lemaître–Robertson–Walker (FLRW) class of spacetimes. Using the Joint Light-curve Analysis (JLA) catalogue of supernovae Type Ia (SNIa), we examine the fit of a class of exact scaling solutions with dynamical spatial curvature formulated in the framework of a scalar averaging scheme for relativistic inhomogeneous spacetimes. In these models, global volume acceleration may emerge as a result of the nonlocal variance between expansion rates of clusters and voids, the latter gaining volume dominance in the late-epoch universe. We find best-fit parameters for a scaling model of backreaction that are reasonably consistent with previously found constraints from SNIa, CMB, and baryon acoustic oscillations data. The quality of fit of the scaling solutions is indistinguishable from that of the ΛCDM model and the timescape cosmology from an Akaike Information Criterion (AIC) perspective. This indicates that a broad class of models can account for the [Formula: see text] expansion history.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3