Temperature oscillations of a gas moving close to circular geodesic in Reissner–Nordström spacetime

Author:

Mehret Leandro Cesar1,Kremer Gilberto Medeiros1ORCID

Affiliation:

1. Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Brazil

Abstract

The objective of this work is to analyze the temperature oscillations that occur in a gas in a circular motion under the action of a Reissner–Nordström gravitational field, verifying the effect of the charge term of the metric on the oscillations. The expression for temperature oscillations follows from Tolman’s law written in Fermi normal coordinates for a comoving observer. The motion of the gas is close to geodesic so the equation of geodesic deviation was used to obtain the expression for temperature oscillations. Then these oscillations are calculated for some compact stars, quark stars, black holes and white dwarfs, using values of electric charge and mass from models found in the literature. Comparing the various models analyzed, it is possible to verify that the role of the charge is the opposite of the mass. While the increase of the mass produces a reduction in the frequencies, amplitude and, in the ratio between the frequencies, the increase of the electric charge produces the inverse effect. In addition, it is shown that if the electric charge is proportional to the mass, the ratio between the frequencies does not depend on the mass, but only on the proportionality factor between charge and mass. The ratios between the frequencies for all the models analyzed (except for supermassive black holes in the extreme limit situations) are close to the [Formula: see text] ratio for twin peak quasi-periodic oscillation (QPO) frequencies, observed in many galactic black holes and neutron star sources in low-mass X-ray binaries.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3