NOTE ON AN EXTENSION OF AN ASYMPTOTIC EXPANSION SCHEME

Author:

TAKAHASHI AKIHIKO1,TODA MASASHI1

Affiliation:

1. Graduate School of Economics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

This paper presents an extension of a general computational scheme for asymptotic expansions proposed in earlier works by the authors and coworkers. In the earlier works, a new method was developed for the computation of an arbitrary-order expansion with a normal benchmark distribution in a multidimensional diffusion setting. In particular, a new algorithm was proposed for calculating coefficients in an expansion by solving a system of ordinary differential equations. In the present note, by a change of variable technique, and by various ways of setting the perturbation parameters in the expansion, we provide the flexibility of setting the benchmark distribution around which the expansion is made and an automatic way for computation up to any order in the expansion. For instance, we introduce new expansions, called the lognormal expansion and the CEV expansion. We also show some concrete examples with numerical experiments, which imply that a high-order CEV expansion will produce more a precise and stable approximation for option pricing under the SABR model than other approximation methods such as the log-normal expansion and the well-known normal expansion.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Economics, Econometrics and Finance,Finance

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic expansion of a nonlinear oscillator with a jump-diffusion process;Japan Journal of Industrial and Applied Mathematics;2018-05-23

2. A weak approximation with asymptotic expansion and multidimensional Malliavin weights;The Annals of Applied Probability;2016-04-01

3. From characteristic functions to implied volatility expansions;Advances in Applied Probability;2015-09

4. From characteristic functions to implied volatility expansions;Advances in Applied Probability;2015-09

5. Asymptotic Expansion Approach in Finance;Large Deviations and Asymptotic Methods in Finance;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3