RATING TRANSITIONS FORECASTING: A FILTERING APPROACH

Author:

COUSIN ARESKI12,LELONG JÉRǑME3,PICARD TOM13

Affiliation:

1. Nexialog Consulting, 110 Av. de la République, 75011 Paris, France

2. IRMA, UMR 7501, Université de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg Cedex, France

3. Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract

Analyzing the effect of business cycle on rating transitions has been a subject of great interest these last 15 years, particularly due to the increasing pressure coming from regulators for stress testing. In this paper, we consider that the dynamics of rating migrations, in a pool of credit references, is governed by a common unobserved latent Markov chain. We explain how the current state of the hidden factor, can be efficiently inferred from observations of rating histories. We then adapt the classical Baum–Welch algorithm to our setting and show how to estimate the latent factor parameters. Once calibrated, we may reveal and detect economic changes affecting the dynamics of rating migration, in real time. The filtering formula is then used to predict future transition probabilities according to the economic cycle without using any external covariates. We propose two filtering frameworks: a discrete and a continuous version. We demonstrate and compare the efficiency of both approaches on fictive data and on a corporate credit rating database. The methods could also be applied to retail credit loans. Finally, under a point process filtering framework, we extend the standard discrete-time filtering formula to a more general setting, where the hidden process does not need to be a Markov chain.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Economics, Econometrics and Finance,Finance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3