BAYESIAN LEARNING FOR THE MARKOWITZ PORTFOLIO SELECTION PROBLEM

Author:

DE FRANCO CARMINE1,NICOLLE JOHANN12,PHAM HUYÊN3

Affiliation:

1. OSSIAM, Paris, France

2. Laboratoire de Probabilités Statistique et Modélisation (LPSM), Paris, France

3. Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Université de Paris, Paris, France

Abstract

We study the Markowitz portfolio selection problem with unknown drift vector in the multi-dimensional framework. The prior belief on the uncertain expected rate of return is modeled by an arbitrary probability law, and a Bayesian approach from filtering theory is used to learn the posterior distribution about the drift given the observed market data of the assets. The Bayesian Markowitz problem is then embedded into an auxiliary standard control problem that we characterize by a dynamic programming method and prove the existence and uniqueness of a smooth solution to the related semi-linear partial differential equation (PDE). The optimal Markowitz portfolio strategy is explicitly computed in the case of a Gaussian prior distribution. Finally, we measure the quantitative impact of learning, updating the strategy from observed data, compared to nonlearning, using a constant drift in an uncertain context, and analyze the sensitivity of the value of information with respect to various relevant parameters of our model.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Economics, Econometrics and Finance,Finance

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terminal wealth maximization under drift uncertainty;Optimization;2024-03-05

2. Portfolio optimization with sparse multivariate modeling;Journal of Asset Management;2022-08-25

3. Effective Approximation Methods for Constrained Utility Maximization with Drift Uncertainty;Journal of Optimization Theory and Applications;2022-04-08

4. Continuous-Time Portfolio Optimization for Absolute Return Funds;Asia-Pacific Financial Markets;2022-04-04

5. Continuous Time Portfolio Optimization with Twice Integrated Kernel-Based Collocation;Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3