Affiliation:
1. School of Mathematics, The University of Manchester, M60 1QD, UK
Abstract
The aim of this paper is to present a stochastic model that accounts for the effects of a long-memory in volatility on option pricing. The starting point is the stochastic Black–Scholes equation involving volatility with long-range dependence. We define the stochastic option price as a sum of classical Black–Scholes price and random deviation describing the risk from the random volatility. By using the fact that the option price and random volatility change on different time scales, we derive the asymptotic equation for this deviation involving fractional Brownian motion. The solution to this equation allows us to find the pricing bands for options.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Economics, Econometrics and Finance,Finance
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献