A VOLATILITY-OF-VOLATILITY EXPANSION OF THE OPTION PRICES IN THE SABR STOCHASTIC VOLATILITY MODEL

Author:

GRISHCHENKO OLESYA1,HAN XIAO2,NISTOR VICTOR3ORCID

Affiliation:

1. Division of Monetary Affairs, Federal Reserve Board, Washington, DC 20551, USA

2. Barclays Capital, Quantitative Analytics, New York City, USA

3. Université de Lorraine, UFR, MIM, 57000 Metz, France

Abstract

We propose a new type of asymptotic expansion for the transition probability density function (or heat kernel) of certain parabolic partial differential equations (PDEs) that appear in option pricing. As other, related methods developed by Costanzino, Hagan, Gatheral, Lesniewski, Pascucci, and their collaborators, among others, our method is based on the computation of the truncated asymptotic expansion of the heat kernel with respect to a “small” parameter. What sets our method apart is that our small parameter is possibly different from the time to expiry and that the resulting commutator calculations go beyond the nilpotent Lie algebra case. In favorable situations, the terms of this asymptotic expansion can quickly be computed explicitly leading to a “closed-form” approximation of the solution, and hence of the option price. Our approximations tend to have much fewer terms than the ones obtained from short time asymptotics, and are thus easier to generalize. Another advantage is that the first term of our expansion corresponds to the classical Black-Scholes model. Our method also provides equally fast approximations of the derivatives of the solution, which is usually a challenge. A full theoretical justification of our method seems very difficult at this time, but we do provide some justification based on the results of (Siyan, Mazzucato, and Nistor, NWEJ 2018). We therefore mostly content ourselves to demonstrate numerically the efficiency of our method by applying it to the solution of the mean-reverting SABR stochastic volatility model PDE, commonly referred to as the [Formula: see text]SABR PDE, by taking the volatility of the volatility parameter [Formula: see text] (vol-of-vol) as a small parameter. For this PDE, we provide extensive numerical tests to gauge the performance of our method. In particular, we compare our approximation to the one obtained using Hagan’s formula and to the one obtained using a new, adaptive finite difference method. We provide an explicit asymptotic expansion for the implied volatility (generalizing Hagan’s formula), which is what is typically needed in concrete applications. We also calibrate our model to observed market option price data. The resulting values for the parameters [Formula: see text], [Formula: see text], and [Formula: see text] are realistic, which provides more evidence for the conjecture that the volatility is mean-reverting.

Funder

Agence Nationale de Recherche, France

Publisher

World Scientific Pub Co Pte Lt

Subject

General Economics, Econometrics and Finance,Finance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3