Optimal Cluster-Based Topology and Deep LSTM-Based Prediction Method for Data Reduction in IoT

Author:

Jagdale B. N.1,Sugave Shounak Rushikesh1,Kulkarni Yogesh R.1

Affiliation:

1. Faculty at School of CET, Dr. Vishwanath Karad MIT World Peace University, Pune, India

Abstract

In the Wireless Sensor Network (WSN), the data prediction approach is needed to attain data effectively by diminishing node energy consumption. Hence, in this research, Water cycle Fire Fly Optimization and Deep Long Short-Term Memory (WCFO+ Deep LSTM) approach is employed for aggregation and reduction of data. The processes involved in the developed method are node simulation, cluster-based topology construction, routing tree construction, and data aggregation. Initially, IoT nodes are simulated in the network environment. The cluster-based topology construction is made using the WCFO algorithm. The WCFO is developed by the integration of the Firefly Optimization Algorithm (FOA) and Water cycle algorithm (WCA). The cluster-based topology is constructed by considering the objective function that includes the parameters, including distance, delay, link quality, and energy. After that, the routing process is performed using developed WCFO approach for constructing a routing tree and estimating the optimal path. Finally, the Deep LSTM is trained by the proposed WCFO algorithm, which is utilized for executing data reduction and data aggregation process with minimum energy consumption. The devised WCFO+ Deep LSTM approach achieved better performance in terms of prediction error, delay, energy, and Packet delivery ratio (PDR) with values 0.029, 0.001[Formula: see text]s, 0.161[Formula: see text]J and 99.054%, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Control and Optimization,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3