Affiliation:
1. Department of Mechanical Engineering. SVNIT, Ichchhanath, Surat, Gujarat 395007, India
Abstract
In the present work, experimental investigation and the numerical analysis are carried out for strength analysis of A356 alloy matrix composites reinforced with alumina, fly ash and hybrid particle composites. The combined strengthening effect of load bearing, Hall–Petch, Orowan, coefficient of thermal expansion mismatch and elastic modulus mismatch is studied for predicting accurate uniaxial stress–strain behavior of A356 based alloy matrix composite. The unit cell micromechanical approach and nine noded isoparametric finite element analysis (FEA) is used to investigate the yield failure load by considering material defect of porosity as fabrication errors in particulate composite. The Ramberg–Osgood approach is considered for the linear and nonlinear relationship between stress and strain of A356 based metal matrix composites containing different amounts of fly ash and alumina reinforcing particles. A numerical analysis of material porosity on the stress strain behavior of the composite is performed. The literature and experimental results exhibit the validity of this model and confirm the importance of the fly ash as the cheapest and low density reinforcement obtained as a waste by product in thermal power plants.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献