Learning automata-based butterfly optimization algorithm for engineering design problems

Author:

Arora Sankalap1,Anand Priyanka2

Affiliation:

1. Department of Computer Science & Engineering, DAV University, Jalandhar, Punjab, Jalandhar, India

2. Department of Computer Science & Engineering, Lovely Professional University, Punjab, Jalandhar, India

Abstract

Butterfly Optimization Algorithm (BOA) is a novel meta-heuristic algorithm inspired by the food foraging behavior of the butterflies. The performance of BOA critically depends upon the probability parameter which decides whether the butterfly has to move towards the best butterfly of the population or perform a random search. Therefore, in order to increase the potential of the BOA, which focuses on exploration phase in the initial stages and on exploitation in the later stages of the optimization, learning automata have been embedded in BOA in which a learning automaton takes the role of configuring the behavior of a butterfly in order to create a proper balance between the process of global and local search. The introduction of learning automata accelerates the global convergence speed to the true global optimum while preserving the main feature of the basic BOA. In order to validate the effectiveness of the proposed algorithm, it is evaluated on 17 benchmark test functions and 3 classical engineering design problems with different characteristics, having real-world applications. The simulation results demonstrate that the introduction of learning automata in BOA has significantly boosted the performance of BOA in terms of achievement of true global optimum and avoidance of local optima entrapment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3