Different CNN-based Architectures for Detection of Invasive Ductal Carcinoma in Breast Using Histopathology Images

Author:

Gupta Isha1,Gupta Sheifali1,Singh Swati1

Affiliation:

1. Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India

Abstract

In recent years, many improvements have been made in image processing techniques which aid pathologists to identify cancer cells. Nowadays, convolutional neural networks (CNNs), also known as deep learning algorithms have become popular for the applications of image processing and examination in histopathology image (tissue and cell images). This study aims to present the detection of histopathology images associated to detection of invasive ductal carcinoma (IDC) and non-IDC in breast. However, detection of IDC is a challenging task in histopathology image which needs deep examination as cancer comprises of minor entities with a diversity of forms which can be easily mixed up with different objects or facts contained in image. Hence, the proposed study suggests three types of CNN architectures which is called 8-layer CNNs, 9-layer CNNs and 19-layer CNNs, respectively, in the detecting IDC using histopathology images. The purpose of the study is to identify IDC from histopathology images by taking proper layer in deep layer CNNs with the maximum accuracy, highest sensitivity, precision and least classification error. The result shows better performance for deep layer-convolutional neural networks architecture by using 19-layer CNNs.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3