Optimization-Assisted CNN Model for Fault Classification and Site Location in Transmission Lines

Author:

Rajesh Kumar V.1,Aruna Jeyanthy P.2,Kesavamoorthy R.3

Affiliation:

1. Department of Electrical & Electronics Engineering, Sir M.Visvesvaraya Institute of Technology, Bengaluru 562157, Karnataka, India

2. Department of Electrical & Electronics Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, India

3. Department of Computer Science and Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India

Abstract

The theme of the paper is to emphasize the detection and classification of faults and their site location in the transmission line using machine learning techniques which help to indemnify the foul-up of the humans in identifying the site and type of occurrence of fault. Moreover, the transient stability is a supreme one in power systems and so the disturbances like faults are required to be separated to preserve the transient stability. In general, the protection of the transmission line includes the installation of relays at both ends of the line that constantly monitor voltages and currents and operate unless a fault occurs on a line. Therefore, this paper intends to introduce a novel transmission line protection model by exploiting the hybrid optimization concept to train the Convolutional Neural Network (CNN). Here, the fault detection, classification and site location are diagnosed by using CNN which is trained and tested by making use of diverse synthetic field data derived from the simulation models of distinct types of transmission lines. Hence, the location and the type of faults will be predicted by the CNN depending on the fault signal characteristics which are optimally trained by a new hybrid algorithm named Chicken Swarm Insisted Spotted Hyena (CSI-SH) Algorithm that hybrids both the concept of Spotted Hyena Optimization (SHO) and Chicken Swarm Optimization (CSO). Finally, the proposed method based on CNN for fault classification and site location of transmission lines is implemented in MATLAB/Simulink and the performances are compared with various measures like classification accuracy, fault detection rate and so on.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3