Laplace-Based 3D Human Mesh Sequence Compression

Author:

He Shuhan1,Li Xueming1,Fu Qiang1

Affiliation:

1. School of Digital Media and Design Arts, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing 100876, P. R. China

Abstract

Three-dimensional (3D) human mesh sequences obtained by 3D scanning equipment are often used in film and television, games, the internet, and other industries. However, due to the dense point cloud data obtained by 3D scanning equipment, the data of a single frame of a 3D human model is always large. Considering the different topologies of models between different frames, and even the interaction between the human body and other objects, the content of 3D models between different frames is also complex. Therefore, the traditional 3D model compression method always cannot handle the compression of the 3D human mesh sequence. To address this problem, we propose a sequence compression method of 3D human mesh sequence based on the Laplace operator, and test it on the complex interactive behavior of a soccer player bouncing the ball. This method first detects the mesh separation degree of the interactive object and human body, and then divides the sequence into a series of fragments based on the consistency of separation degrees. In each fragment, we employ a deformation algorithm to map keyframe topology to other frames, to improve the compression ratio of the sequence. Our work can be used for the storage of mesh sequences and mobile applications by providing an approach for data compression.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3