Intelligent Differentiation Framework for Lewy Body Dementia and Alzheimer’s disease using Adaptive Multi-Cascaded ResNet–Autoencoder–LSTM Network

Author:

Sravani K.1ORCID,RaviSankar V.1ORCID

Affiliation:

1. Department of Computer Science and Engineering, GITAM University, Hyderabad 502329, India

Abstract

In recent years, most of the patients with dementia have acquired healthcare systems within the primary care system and they also have some challenging psychiatric and medical issues. Here, dementia-based symptoms are not identified in the primary care center, because they are affected by various factors like psychological symptoms, clinically relevant behavior, numerous psychotropic medications, and multiple chronic medical conditions. To enhance the healthcare-related applications, the primary healthcare system with additional resources like coordination with interdisciplinary dementia specialists, feasible diagnosis, and screening process need to be improved. Therefore, the differentiation between Alzheimer’s Disease (AD) and Lewy Body Dementia (LBD) has been acquired to provide the best clinical support to the patients. In this research work, the deep structure depending on AD and LBD systems has been implemented with the help of an adaptive algorithm to provide promising outcomes over dementia detection. Initially, the input images are collected from online sources. Thus, the collected images are forwarded to the newly designed Multi-Cascaded Deep Learning (MSDL), where the ResNet, Autoencoder, and weighted Long-Short Term Memory (LSTM) networks are serially cascaded to provide effective classification results. Then, the fully connected layer of ResNet is given to the Autoencoder structure. Here, the output from the encoder phase is optimized by using the Adaptive Water Wave Cuttlefish Optimization (AWWCO), which is derived from the Water Wave Optimization (WWO) and Cuttlefish Algorithm (CA), and the resultant selected output is fed to the weight-optimized LSTM network. Further, the parameters in the MSDL network are optimized by using the same AWWCO algorithm. Finally, the performance comparison over different heuristic algorithms and conventional dementia detection approaches is done for the validation of the overall effectiveness of the suggested model in terms of various estimation measures.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3