Affiliation:
1. MET’s Institute of Engineering, Adgaon, Nashik 422003, India
2. SSBT’s College of Engineering and Technology, Bhambori, Jalgaon, India
Abstract
In this paper, we describe our work in Spoken language Identification using Visual Speech Recognition (VSR) and analyze the effect of various visual speech units used to transcribe the visual speech on language recognition. We have proposed a new approach of word recognition followed by the word N-gram language model (WRWLM), which uses high-level syntactic features and the word bigram language model for language discrimination. Also, as opposed to the traditional visemic approach, we propose a holistic approach of using the signature of a whole word, referred to as a “Visual Word” as visual speech unit for transcribing visual speech. The result shows Word Recognition Rate (WRR) of 88% and Language Recognition Rate (LRR) of 94% in speaker dependent cases and 58% WRR and 77% LRR in speaker independent cases for English and Marathi digit classification task. The proposed approach is also evaluated for continuous speech input. The result shows that the Spoken Language Identification rate of 50% is possible even though the WRR using Visual Speech Recognition is below 10%, using only 1[Formula: see text]s of speech. Also, there is an improvement of about 5% in language discrimination as compared to traditional visemic approaches.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献