Empirical Evaluation of Texture Features and Classifiers for Liver Disease Diagnosis

Author:

Sinduja A.1,Suruliandi A.1,Raja S. P.2

Affiliation:

1. Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India

2. Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala, R&D Institute of Science and Technology Avadi, Chennai, Tamil Nadu, India

Abstract

The liver cancer is one of the most common fatal diseases worldwide, and its early detection through medical imaging is a major contributor to the reduction in mortality from certain cancer. This paves the way to work on diagnosing liver diseases effectively. An accurate diagnosis of liver disease in CT image requires an efficient description of textures and classification methods. This paper performs comparative analysis on proposed texture feature descriptor with the different existing texture features with various classifiers to classify six types of diffused and focal liver diseases. The classification of liver diseases is done in two stages. In first stage, features like segmentation based fractal texture analysis, counting label occurrence matrix, local configuration pattern, eXtended center-symmetric local binary pattern and the proposed local symmetric tetra pattern are used for extracting information from the CT liver structure and classifiers like support vector machine, [Formula: see text]-nearest neighbor, and naive Bayes are used for classifying the pathologic liver. When pathologic conditions are detected, the best feature descriptors and classifiers are used to classify the results into any of six exclusive pathologic liver diseases, in second stage. The experiments are carried out in medically validated liver datasets containing normal and six-disease category of liver. The first experiment is analyzed using sensitivity, specificity, and accuracy. The second experiment is evaluated using precision, recall, BCR, and F-measure. The results demonstrate that the local symmetric tetra pattern with [Formula: see text]-nearest neighbor classifier culminates in a state-of-the-art performance for diagnosing liver diseases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting tumors in medical images using segmentation and feature extraction techniques;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Efficient Cybersecurity Model Using Wavelet Deep CNN and Enhanced Rain Optimization Algorithm;International Journal of Image and Graphics;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3