Fault Signal Perception of Nanofiber Sensor for 3D Human Motion Detection Using Multi-Task Deep Learning

Author:

Liu Yun1ORCID

Affiliation:

1. Public Basic Education Department, Chongqing Vocational College of Applied Technology, ChongQing 400000, P. R. China

Abstract

Once a fault occurs in the nanofiber sensor, the scientific and reliable three-dimensional (3D) human motion detection results will be compromised. It is necessary to accurately and rapidly perceive the fault signals of the nanofiber sensor and determine the type of fault, to enable it to continue operating in a sustained and stable manner. Therefore, we propose a fault signal perception method for 3D human motion detection nanofiber sensor based on multi-task deep learning. First, through obtaining the fault characteristic parameters of the nanofiber sensor, the fault of the nanofiber sensor is reconstructed to complete the fault location of the nanofiber sensor. Second, the fault signal of the nanofiber sensor is mapped by the penalty function, and the feature extraction model of the fault signal of the nanofiber sensor is constructed by combining the multi-task deep learning. Finally, the multi-task deep learning algorithm is used to calculate the sampling frequency of the fault signal, and the key variable information of the fault of the nanofiber sensor is extracted according to the amplitude of the state change of the nanofiber sensor, to realize the perception of the fault signal of the nanofiber sensor. The results show that the proposed method can accurately perceive the fault signal of a nanofiber sensor in 3D human motion detection, the maximum sensor fault location accuracy is 97%, and the maximum noise content of the fault signal is only 5 dB, which shows that the method can be widely used in fault signal perception.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3