A Novel Image Recovery from Moving Water Surface Using Multi-Objective Bispectrum Method

Author:

Kumar Kattela Pavan1,Rao Matcha Venu Gopala1,Venkatanarayana Moram2

Affiliation:

1. ECE, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, Andhra Pradesh, India

2. ECE, KSRM College of Engineering (Autonomous), Andhra Pradesh, India

Abstract

Nowadays, the image degradation field suffers from several challenges while processing underwater color images including color distortion and image blurring due to the scattering media. Moreover, to get appropriate multi-frame super-resolution images, there is essential for recovering a better quantity of images. Traditionally, the shift among images is directly evaluated when considering the under-sampled Low-Resolution (LR) images. On the other hand, the high-frequency LR image faces unreliability owing to the aliasing consequences of sub-sampling, but it will also degrade the recovery accuracy. This task design implements a novel image recovery model from the moving water surface by adopting the multi-objective adaptive higher-order spectral analysis. Image pre-processing, lucky region selection, and image recovery are the three main phases of this model. The bicoherence method and dice coefficient method are adopted for performing the lucky region selection. Finally, the adoption of the multi-objective adaptive bispectra method is used for performing the image recovery from the moving water surface. The improved Adaptive Fitness-oriented Random number-based Galactic Swarm Optimization (AFR-GSO) algorithm is used for optimizing the constraints of the bispectrum method. The experimental results verify the enrichment of image quality by the proposed model over the existing techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3