Fast Hyperspectral Image Encoder Based on Supervised Multimodal Scheme

Author:

Akrour Leila1,Ameur Soltane1,Lahdir Mourad1,Fournier Régis2,Ali Amine Nait2

Affiliation:

1. Laboratoire d’Analyse et Modelisation des Phenomènes Aleatoires (LAMPA), UMMTO, BP 17 RP, 15000, Tizi-Ouzou, Algeria

2. Laboratoire Images, Signaux et Systemes Intelligents (LiSSi), Universite Paris-Est Creteil, EA. 3956, 61, avenue du General de Gaulle 94010, Creteil, France

Abstract

Many compression methods, lossy or lossless, were developed for 3D hyperspectral images, and various standards have emerged and applied to these amounts of data in order to achieve the best rate-distortion performance. However, high-dimensional data volume of hyperspectal images is problematic for compression and decompression time. Nowadays, fast compression and especially fast decompression algorithms are of primary importance in image data applications. In this case, we present a lossy hyperspectral image compression based on supervised multimodal scheme in order to improve the compression results. The supervised multimodal method is used to reduce the amount of data before their compression with the 3D-SPIHT encoder based on 3D wavelet transform. The performance of the Supervised Multimodal Compression (SMC-3D-SPIHT encoder) has been evaluated on AVIRIS hyperspectral images. Experimental results indicate that the proposed algorithm provides very promising performance at low bit-rates while reducing the encoding/decoding time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep dual incomplete multi-view multi-label classification via label semantic-guided contrastive learning;Neural Networks;2024-12

2. The effect of the Radon field for efficient medical image compression;2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON);2023-02-08

3. Images indexing and matched assessment of semantics and visuals similarities applied to a medical learning X-ray image base;Journal of X-Ray Science and Technology;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3