Entropy Kernel Graph Cut Feature Space Enhancement with SqueezeNet Deep Neural Network for Textural Image Segmentation

Author:

Niazi Mehrnaz1ORCID,Rahbar Kambiz2ORCID

Affiliation:

1. Department of Computer Engineering, Pishtazan Higher Education Institute, Shiraz, Iran

2. Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Recently, image segmentation based on graph cut methods has shown remarkable performance on a set of image data. Although the kernel graph cut method provides good performance, its performance is highly dependent on the data mapping to the transformation space and image features. The entropy-based kernel graph cut method is suitable for segmentation of textured images. Nonetheless, its segmentation quality remains significantly contingent on the accuracy and richness of feature space representation and kernel centers. This paper introduces an entropy-based kernel graph cut method, which leverages the discriminative feature space extracted from SqueezeNet, a deep neural network. The fusion of SqueezeNet’s features enriches the segmentation process by capturing high-level semantic information. Moreover, the extraction of kernel centers is refined through a weighted k-means approach, contributing further to the segmentation’s precision and effectiveness. The proposed method, while exploiting the benefits of suitable computational load of graph cut methods, will be a suitable alternative for segmenting textured images. Laboratory results have been taken on a set of well-known datasets that include textured shapes in order to evaluate the efficiency of the algorithm compared to other well-known methods in the field of kernel graph cut.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3