Integrating Global Zernike and Local Discriminative HOG Features for Face Recognition

Author:

Singh Geetika1,Chhabra Indu1

Affiliation:

1. Department of Computer Science and Applications, Panjab University, Chandigarh 160014, India

Abstract

Extraction of global face appearance and local interior differences is essential for any face recognition application. This paper presents a novel framework for face recognition by combining two effective descriptors namely, Zernike moments (ZM) and histogram of oriented gradients (HOG). ZMs are global descriptors that are invariant to image rotation, noise and scale. HOGs capture local details and are robust to illumination changes. Fusion of these two descriptors combines the merits of both local and global approaches and is effective against diverse variations present in face images. Further, as the processing time of HOG features is high owing to its large dimensionality, so, the study proposes to improve its performance by selecting only most discriminative HOG features (named discriminative HOG (DHOG)) for performing recognition. Efficacy of the proposed methods (DHOG, [Formula: see text] and [Formula: see text]) is tested on ORL, Yale and FERET databases. DHOG provides an improvement of 3% to 5% over the existing HOG approach. Recognition results achieved by [Formula: see text] and [Formula: see text] are up to 15% and 18% higher respectively than those obtained with these descriptors individually. Performance is also analyzed on LFW face database and compared with recent and state-of-the-art methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3