Hybrid Pattern Extraction with Deep Learning-Based Heart Disease Diagnosis Using Echocardiogram Images

Author:

Chamundeshwari 1,Biradar Nagashetteppa2,Udaykumar 2

Affiliation:

1. Department of Computer Science and Engineering, Bheemanna Khandre Institute of Technology, Bhalki, Bida 585328, Karnataka, India

2. Department of Electronics and Communication and Engineering, Bheemanna Khandre Institute of Technology, Bhalki, Bida 585328, Karnataka, India

Abstract

Echocardiography represents a noninvasive diagnostic approach that offers information concerning hemodynamics and cardiac function. It is a familiar cardiovascular diagnostic test apart from chest X-ray and echocardiography. The medical knowledge is enhanced by the Artificial Intelligence (AI) approaches like deep learning and machine learning because of the increase in the complexity as well as the volume of the data that in turn unlocks the clinically significant information. Similarly, the usage of developing information as well as communication technologies is becoming important for generating a persistent healthcare service via which the chronic disease and elderly patients get their medical facility at their home that in turn enhances the life quality and avoids hospitalizations. The main intention of this paper is to design and develop a novel heart disease diagnosis using speckle-noise reduction and deep learning-based feature learning and classification. The datasets gathered from the hospital are composed of both the images and the video frames. Since echocardiogram images suffer from speckle noise, the initial process is the speckle-noise reduction technique. Then, the pattern extraction is performed by combining the Local Binary Pattern (LBP), and Weber Local Descriptor (WLD) referred to as the hybrid pattern extraction. The deep feature learning is conducted by the optimized Convolutional Neural Network (CNN), in which the features are extracted from the max-pooling layer, and the fully connected layer is replaced by the optimized Recurrent Neural Network (RNN) for handling the diagnosis of heart disease, thus proposed model is termed as CRNN. The novel Adaptive Electric Fish Optimization (A-EFO) is used for performing feature learning and classification. In the final step, the best accuracy is achieved with the introduced model, while a comparative analysis is accomplished over the traditional models. From the experimental analysis, FDR of A-EFO-CRNN at 75% learning percentage is 21.05%, 15%, 48.89%, and 71.95% progressed than CRNN, CNN, RNN, and NN, respectively. Thus, the performance of the A-EFO-CRNN is enriched than the existing heuristic-oriented and classifiers in terms of the image dataset.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3