Human Activity Recognition Algorithm in Video Sequences Based on Integration of Magnitude and Orientation Information of Optical Flow

Author:

Kushwaha Arati1,Khare Ashish1,Khare Manish2

Affiliation:

1. Department of Electronics and Communication, University of Allahabad, Allahabad, India

2. Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India

Abstract

Human activity recognition from video sequences has emerged recently as pivotal research area due to its importance in a large number of applications such as real-time surveillance monitoring, healthcare, smart homes, security, behavior analysis, and many more. However, lots of challenges also exist such as intra-class variations, object occlusion, varying illumination condition, complex background, camera motion, etc. In this work, we introduce a novel feature descriptor based on the integration of magnitude and orientation information of optical flow and histogram of oriented gradients which gives an efficient and robust feature vector for the recognition of human activities for real-world environment. In the proposed approach first we computed magnitude and orientation of the optical flow separately then a local-oriented histogram of magnitude and orientation of motion flow vectors are computed using histogram of oriented gradients followed by linear combination feature fusion strategy. The resultant features are then processed by a multiclass Support Vector Machine (SVM) classifier for activity recognition. The experimental results are performed over different publically available benchmark video datasets such as UT interaction, CASIA, and HMDB51 datasets. The effectiveness of the proposed approach is evaluated in terms of six different performance parameters such as accuracy, precision, recall, specificity, [Formula: see text]-measure, and Matthew’s correlation coefficient (MCC). To show the significance of the proposed method, it is compared with the other state-of-the-art methods. The experimental result shows that the proposed method performs well in comparison to other state-of-the-art methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Activity Recognition Based On Video Summarization And Deep Convolutional Neural Network;The Computer Journal;2024-03-23

2. Evaluation of Data Calculus Quality Based on Computer Intelligent Image Recognition Algorithm;2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN);2023-12-22

3. Foreground extraction of air traffic management system surveillance video based on gaussian mixture model;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

4. Human activity recognition algorithm in video sequences based on the fusion of multiple features for realistic and multi-view environment;Multimedia Tools and Applications;2023-08-08

5. Two stream deep neural network based framework to detect abnormal human activities;Journal of Electronic Imaging;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3