Automated Image Super Resolution with the Aid of Activation Function Optimized Deep CNN and Adaptive Wavelet Lifting Approach

Author:

Valli Bhasha A.1,Venkatramana Reddy B. D.2

Affiliation:

1. ECE Department, JNTUA, Ananthapuramu, Andhra Pradesh, India

2. ECE Department, Sir Vishveshwaraiah Institute of Science & Technology, Madanapalle, Andhra Pradesh, India

Abstract

Diverse image super-resolution (SR) techniques have been implemented to reconstruct the high-resolution (HR) images from input images through lower spatial resolutions. However, the evaluation of the perceptual quality of SR images remains an important and complex research problem. This paper proposes a new image SR model with the intention of attaining maximum Peak Signal-to-Noise Ratio (PSNR). The conversion of low-resolution (LR) images from the HR images is performed by bicubic interpolation-based downsampling and upsampling. Then, the four sub-bands of LR and HR images are generated by the novel Adaptive Wavelet Lifting approach, in which the filter modes are optimized using the proposed SA-CBO. From this technique, LR wavelet sub-bands (LRSB) for LR images and HR wavelet sub-bands (HRSB) for HR images are formed. With the help of the LRSB and HRSB images, the residual images are formed by the adoption of the optimized Activation function and optimized hidden neurons in a deep convolutional neural network (CNN). The improvement in both the adaptive wavelet lifting approach and deep CNN is made by the self-adaptive-colliding bodies optimization (SA-CBO). Finally, the inverse adaptive wavelet lifting approach is used to produce the final SR image. Experimental results on publicly available SR image quality databases confirm the effectiveness and generalization ability of the proposed method compared with the traditional image quality assessment algorithms.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3