Classification of Mammogram Abnormalities Using Legendre Moments

Author:

Silva Rodrigo Dalvit C.12,Jenkyn Thomas R.12345

Affiliation:

1. Craniofacial Injury and Concussion Research Laboratory, Western University, London, ON, Canada

2. School of Biomedical Engineering, Western University, London, ON, Canada

3. Department of Mechanical and Materials Engineering, Western University, London, ON, Canada

4. School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada

5. Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, Western University, London, ON, Canada

Abstract

In this paper, the issue of classifying mammogram abnormalities using images from an mammogram image analysis society (MIAS) database is discussed. We compare a feature extractor based on Legendre moments (LMs) with six other feature extractors. To determine the best feature extractor, the performance of each was compared in terms of classification accuracy rate and extraction time using a [Formula: see text]-nearest neighbors ([Formula: see text]-NN) classifier. This study shows that feature extraction using LMs performed best with an accuracy rate over 84% and requiring relatively little time for feature extraction, on average only 1[Formula: see text]s.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3