CNN-LandCoverNet: An Effective Framework of Land Cover Classification Using Hybrid Metaheuristic-Aided Ensemble-Based Convolutional Neural Network

Author:

Jyothula Samrajam1ORCID,Chandrasekhar S.1

Affiliation:

1. Gitam Deemed to be University, Hyderabad, Telangana, India

Abstract

Land cover (LC) categorization is considered a necessary task of intelligent interpretation technology for remote sensing imagery that is intended to categorize every pixel to perform the predefined LC classification. Land Use and Land Cover (LULC) information has the ability to provide various insights in order to overcome environmental and socioeconomic impacts such as disaster risk, climate change, poverty, and food insecurity. Therefore, image categorization tasks are involved in conventional works, where the classical visual interpretation techniques completely depend upon professional knowledge as well as a professional’s classification experience, which is more susceptible to subjective awareness, inefficient, and time consuming. By overcoming this issue, the latest deep-structured approach is suggested to perform the LC image classification. Initially, the land images are gathered. Further, the collected images are employed for patch splitting, where the images are split into multiple patches. After splitting, the patches are fed to the Ensemble-based Convolutional Neural Network (ECNN), which is constructed with a Fully Convolutional Network (FCN), U-Net, DeepLabv3, and Mask Region-based Convolutional Neural Network (Mask R-CNN) for performing segmentation. Here, the hyperparameters are optimally tuned with the Hybrid Billiards-inspired Water Wave Algorithm (HB-WWA) by integrating the Billiards-inspired Optimization Algorithm (BOA) and Water Wave Algorithm (WWA). Finally, the classification is carried out with a fuzzy classifier. Thus, the performance is validated and measured through diverse metrics. Consequently, the developed work has demonstrated enhanced classification accuracy when tested on other existing algorithms.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3