Image De-Speckling Based on the Coefficient of Variation, Improved Guided Filter, and Fast Bilateral Filter

Author:

Salehi Hadi1

Affiliation:

1. Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

Images are widely used in engineering. Unfortunately, medical ultrasound images and synthetic aperture radar (SAR) images are mainly degraded by an intrinsic noise called speckle. Therefore, de-speckling is a main pre-processing stage for degraded images. In this paper, first, an optimized adaptive Wiener filter (OAWF) is proposed. OAWF can be applied to the input image without the need for logarithmic transform. In addition its performance is improved. Next, the coefficient of variation (CV) is computed from the input image. With the help of CV, the guided filter converts to an improved guided filter (IGF). Next, the improved guided filter is applied on the image. Subsequently, the fast bilateral filter is applied on the image. The proposed filter has a better image detail preservation compared to some other standard methods. The experimental outcomes show that the proposed denoising algorithm is able to preserve image details and edges compared with other de-speckling methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3