Cardiac MRI Segmentation Using Efficient ResNeXT-50-Based IEI Level Set and Anisotropic Sigmoid Diffusion Algorithms

Author:

Bhan Anupama1,Mangipudi Partha Sarathi2,Goyal Ayush3

Affiliation:

1. Department of Electronics and Communication Engineering, Amity School of Engineering and Technology, Amity University, Uttar Pradesh, India

2. Department of Computer Science and Engineering, Amity School of Engineering and Technology Amity University, Uttar Pradesh, India

3. Department of Electrical Engineering and Computer Science, Frank H. Dotterweich College of Engineering, Texas A&M University – Kingsville, USA

Abstract

Endocardial and epicardial border identification has been of extensive interest in cardiac Magnetic Resonance Images (MRIs). It is a difficult job to segment the epicardium and endocardium accurately and automatically from cardiac MRI owing to the cardiac tissues’ complexity even though the prevailing Deep Learning (DL) methodologies had attained significant success in medical imaging segmentation. Hence, by employing effectual ResNeXT-50-centric Inverse Edge Indicator Level Set (IEILS) and anisotropic sigmoid diffusion algorithms, this system has proposed cardiac MRI segmentation. The work has endured some function for an effectual partition of epicardium and endocardium. Initially, by employing the Truncated Kernel Function (TK)-Trilateral Filter, the noise removal function is executed on the input cardiac MRI. Next, by wielding the ResNeXT-50 IEILS, the Left and Right Ventricular (LV/RV) regions are segmented. The epicardium and endocardium are segmented by the ASD algorithm once the LV/RV is separated from the Left Ventricle (LV) region. Here, the openly accessible Sunnybrook and the Right Ventricle (RV) datasets are wielded. Then, the prevailing state-of-art algorithms are analogized to the outcomes achieved by the proposed framework. Regarding accuracy, sensitivity, and specificity, the proposed methodology executed the cardiac MRI segmentation process precisely along with the other surpassed state-of-the-art methodologies.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3