Integration of Dynamic Multi-Atlas and Deep Learning Techniques to Improve Segmentation of the Prostate in MR Images

Author:

Moradi Hamid1,Foruzan Amir Hossein1

Affiliation:

1. Department of Biomedical Engineering, Engineering Faculty, Shahed University, Tehran, Iran

Abstract

Accurate delineation of the prostate in MR images is an essential step for treatment planning and volume estimation of the organ. Prostate segmentation is a challenging task due to its variable size and shape. Moreover, neighboring tissues have a low-contrast with the prostate. We propose a robust and precise automatic algorithm to define the prostate’s boundaries in MR images in this paper. First, we find the prostate’s ROI by a deep neural network and decrease the input image’s size. Next, a dynamic multi-atlas-based approach obtains the initial segmentation of the prostate. A watershed algorithm improves the initial segmentation at the next stage. Finally, an SSM algorithm keeps the result in the domain of allowable prostate shapes. The quantitative evaluation of 74 prostate volumes demonstrated that the proposed method yields a mean Dice coefficient of [Formula: see text]. In comparison with recent researches, our algorithm is robust against shape and size variations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3