Fruit Fly-Based Artificial Neural Network Classifier with Kernel-Based Fuzzy c-Means Clustering for Satellite Image Classification

Author:

Kumar Sandeep1,Suresh L.2

Affiliation:

1. Department of CSE, Cambridge Institute of Technology, Bangalore, India

2. Principal Cambridge Institute of Technology, Bangalore, India

Abstract

Image segmentation and classification are the major challenges to satellite imagery. Also, the identification of unique objects in the satellite image is a significant aspect in the application of remote sensing. Many satellite image classification techniques have been presented earlier. However, the accuracy of the image classification has to be further improved. So that, optimal artificial neural network with kernel-based fuzzy c-means ([Formula: see text]) clustering based satellite image classification is proposed in this paper. Initially, the images are segmented with the help of KFCM algorithm. Then, color features and gray level co-occurrence matrix (GLCM) features to be extracted from the segmented regions. Then, these extracted features are given to the OANN classifier. Based on these features, segmented regions are classified as building, road, shadow, and tree. To enhance the performance of the classifier, the weight values are optimally selected with the help of fruit fly algorithm. Simulation results show that the performance of proposed classifier outperforms that of the existing filters in terms of accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3