Affiliation:
1. Computer Science Department, Southern Connecticut State University, 501 Crescent St., New Haven, CT 06515, USA
Abstract
Image creation and retention are growing at an exponential rate. Individuals produce more images today than ever in history and often these images contain family. In this paper, we develop a framework to detect or identify family in a face image dataset. The ability to identify family in a dataset of images could have a critical impact on finding lost and vulnerable children, identifying terror suspects, social media interactions, and other practical applications. We evaluated our framework by performing experiments on two facial image datasets, the Y-Face and KinFaceW, comprising 37 and 920 images, respectively. We tested two feature extraction techniques, namely PCA and HOG, and three machine learning algorithms, namely K-Means, agglomerative hierarchical clustering, and K nearest neighbors. We achieved promising results with a maximum detection rate of 94.59% using K-Means, 89.18% with agglomerative clustering, and 77.42% using K-nearest neighbors.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献