An Efficient Local Block Sobolev Gradient and Laplacian Approach for Elimination of Atmospheric Turbulence

Author:

Patel Krina1,Israni Dippal2,Garg Dweepna3

Affiliation:

1. U and P U. Patel Department of Computer Engineering, CSPIT, CHARUSAT Anand, Gujarat 383315, India

2. Information Technology Department, R. C. Technical Institute, Ahmedabad, Gujarat 383315, India

3. Department of Computer Engineering, Depstar, Charusat Anand, Gujarat 383315, India

Abstract

A long range observing systems can be sturdily affected by scintillations. These scintillations are caused by changes in atmospheric conditions. In recent years, various turbulence mitigation approaches for turbulence mitigation have been exhibiting a promising nature. In this paper, we propose an effectual method to alleviate the effects of atmospheric distortion on observed images and video sequences. These sequences are mainly affected through floating air turbulence which can severely degrade the image quality. The existing algorithms primarily focus on the removal of turbulence and provides a solution only for static scenes, where there is no moving entity (real motion). As in the traditional SGL algorithm, the updated frame is iteratively used to correct the turbulence. This approach reduces the turbulence effect. However, it imposes some artifacts on the real motion that blurs the object. The proposed method is an alteration of the existing Sobolev Gradient and Laplacian (SGL) algorithm to eliminate turbulence. It eliminates the ghost artifact formed on moving object in the existing approach. The proposed method alleviates turbulence without harming the moving objects in the scene. The method is demonstrated on significantly distorted sequences provided by OTIS and compared with the SGL technique. The information conveyed in the scene becomes clearly visible through the method on exclusion of turbulence. The proposed approach is evaluated using standard performance measures such as MSE, PSNR and SSIM. The evaluation results depict that the proposed method outperforms the existing state-of-the-art approaches for all three standard performance measures.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3