Robust Convolutional Neural Network based on UNet for Iris Segmentation

Author:

Khaki Ali1

Affiliation:

1. Faculty of Computer and IT Engineering, Mazandaran University of Science and Technology, Babol, Iran

Abstract

Nowadays, the iris recognition system is one of the most widely used and most accurate biometric systems. The iris segmentation is the most crucial stage of iris recognition system. The accurate iris segmentation can improve the efficiency of iris recognition. The main objective of iris segmentation is to obtain the iris area. Recently, the iris segmentation methods based on convolutional neural networks (CNNs) have been grown, and they have improved the accuracy greatly. Nevertheless, their accuracy is decreased by low-quality images captured in uncontrolled conditions. Therefore, the existing methods cannot segment low-quality images precisely. To overcome the challenge, this paper proposes a robust convolutional neural network (R-Net) inspired by UNet for iris segmentation. R-Net is divided into two parts: encoder and decoder. In this network, several layers are added to ResNet-34, and used in the encoder path. In the decoder path, four convolutions are applied at each level. Both help to obtain suitable feature maps and increase the network accuracy. The proposed network has been tested on four datasets: UBIRIS v2 (UBIRIS), CASIA iris v4.0 (CASIA) distance, CASIA interval, and IIT Delhi v1.0 (IITD). UBIRIS is a dataset that is used for low-quality images. The error rate (NICE1) of proposed network is 0.0055 on UBIRIS, 0.0105 on CASIA interval, 0.0043 on CASIA distance, and 0.0154 on IITD. Results show better performance of the proposed network compared to other methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3