Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition

Author:

Babu Gorla1ORCID,Khayum Pinjari Abdul23

Affiliation:

1. Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu 515002 Andhra Pradesh, India

2. Department of Electronics and Communication Engineering, G. Pullareddy Engineering (Autonomous) College, Kurnool, Nandyal Road, Kurnool, Andhra Pradesh, India

3. Affiliated to Jawaharlal Nehru Technological University, Anantapur, Ananthapuramu, India

Abstract

Due to its significant applications in security, the iris recognition process has been considered as the most active research area over the last few decades. In general, the iris recognition framework has been crucially utilized for various security applications because it includes a set of features as well as does not alter its character according to the time. In recent times, emerging deep learning techniques have attained huge success, particularly in the field of the iris recognition framework model. Moreover, in considering the field of iris recognition, there is no possibility for the remarkable capability of the deep learning model as well as to attain superior performance. To handle the issues in the conventional model of iris recognition, a novel heuristic-aided deep learning framework has been implemented for recognizing the iris system. Initially, the required source iris images are gathered from the data sources. It is then followed by the pre-processing stage, where the pre-processed image is obtained. Consequently, the image segmentation process is carried out by Adaptive Deeplabv3+layers, in which the parameters are optimized using the Modified Weighted Flow Direction Algorithm (MWFDA). Finally, the iris recognition is accomplished by hybrid Hybridization of Multiscale Dilated-Assisted Learning (MDAL) that will be composed of both a Convolutional Neural Network (CNN) and a Residual Network (ResNet). To achieve optimal recognition results, the parameters in CNN and ResNet are tuned optimally by using MWFDA. The experimental results are estimated with the help of distinct measures. Contrary to conventional methods, the empirical results prove that the recommended model achieves the desired value to enhance the recognition performance.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3