Diabetic Retinopathy (DR) Image Synthesis Using DCGAN and Classification of DR Using Transfer Learning Approaches

Author:

Devi Yerrarapu Sravani1,Kumar S. Phani1

Affiliation:

1. Department of CSE, GITAM Deemed to be University, Hyderabad, Telangana, India

Abstract

Diabetic retinopathy (DR) refers to a diabetes complexity that immensely impacts the eyes. This is classified into 5 various stages of the severity in accordance with the international convention. Despite that, optimization of a grading model to have a robust generalizability needs a huge number of balanced training data that is very complicated to gather, especially for greater levels of severity. A vast amount of medical data is complex and has a very high-priced method which requires cooperation between the clinics and researchers. The issue is usually attempted to be figured out with the usage of the traditional methods of data augmentation by making certain changes to images of retina dataset for instance rotation, cropping, size and zooming. In this suggested paper, the latest methods or techniques of data augmentation is exhibited which is called as deep convolutional generative adversial network (DC-GAN) and variational auto encoders (VAE). This is a particular method which is responsible for the production of artificial medical images. In addition to this, to improve DR, we can also take the aid of the classification models which are resnet50, densenet201, InceptionV3 and VGG19 for the purpose of classification of the eye related diseases. The proposed method is depicted on the Asia Pacific Tele-Ophthalmology Society (APTOS)-Blindness dataset. First, the present-day online data augmentation techniques have been utilized, and the artificial images of retina are produced by the ease of DCGAN. Then, a method of classifying is used for both techniques. Ultimately, after the method training which is done by using the real & synthetic clinical images and the outcome exhibits which the proposed model determines every stage or phase of DR and achieve the accuracy of 98.66% with using of ResNet-50 which is contrary to the current existing techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Fundus Imaging and GAN in Diabetic Retinopathy Classification using VGG19;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3