Affiliation:
1. Department of Computer Science, Banasthali Vidyapith, Rajasthan, India
Abstract
Effective face recognition is accomplished using the extraction of features and classification. Though there are multiple techniques for face image recognition, full face recognition in real-time is quite difficult. One of the emerging and promising methods to address this challenge in face recognition is deep learning networks. The inevitable network tool associated with the face recognition method with deep learning systems is convolutional neural networks (CNNs). This research intends to develop a new method for face recognition using adaptive intelligent methods. The main phases of the proposed method are (a) data collection, (b) image pre-processing, (c) normalization, (d) pattern extraction, and (e) recognition. Initially, the images for face recognition are gathered from CPFW, Yale datasets, and the MIT-CBCL dataset. The image pre-processing is performed by the Gaussian filtering method. Further, the normalization of the image will be done, which is a process that alters the range of pixel intensities and can handle the poor contrast due to glare. Then a new descriptor called adaptive local tri Weber pattern (ALTrWP) acts as a pattern extractor. In the recognition phase, the VGG16 architecture with new chick updated-chicken swarm optimization (NSU-CSO) is used. As the modification, VGG16 architecture will be enhanced by this optimization technique. The performance of the developed method is analyzed on two standards face database. Experimental results are compared with different machine learning approaches concerned with noteworthy measures, which demonstrate the efficiency of the considered classifier.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献