Two-Stream Spatial–Temporal Feature Extraction and Classification Model for Anomaly Event Detection Using Hybrid Deep Learning Architectures

Author:

Mangai P.1,Geetha M. Kalaiselvi1,Kumaravelan G.2

Affiliation:

1. Department of Computer Science & Engineering, Annamalai University, Annamalainagar, Tamil Nadu, India

2. Department of Computer Science, Pondicherry University, Karaikal, Puducherry, India

Abstract

Identifying events using surveillance videos is a major source that reduces crimes and illegal activities. Specifically, abnormal event detection gains more attention so that immediate responses can be provided. Video processing using conventional techniques identifies the events but fails to categorize them. Recently deep learning-based video processing applications provide excellent performances however the architecture considers either spatial or temporal features for event detection. To enhance the detection rate and classification accuracy in abnormal event detection from video keyframes, it is essential to consider both spatial and temporal features. Earlier approaches consider any one of the features from keyframes to detect the anomalies from video frames. However, the results are not accurate and prone to errors sometimes due to video environmental and other factors. Thus, two-stream hybrid deep learning architecture is presented to handle spatial and temporal features in the video anomaly detection process to attain enhanced detection performances. The proposed hybrid models extract spatial features using YOLO-V4 with VGG-16, and temporal features using optical FlowNet with VGG-16. The extracted features are fused and classified using hybrid CNN-LSTM model. Experimentation using benchmark UCF crime dataset validates the proposed model performances over existing anomaly detection methods. The proposed model attains maximum accuracy of 95.6% which indicates better performance compared to state-of-the-art techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3