Edge Detection in Natural Scenes Inspired by the Speed Drawing Challenge

Author:

Canêjo Marcos José1,de Mello Carlos Alexandre Barros1

Affiliation:

1. Centro de Informatica, Universidade Federal de Pernambuco, Av. Jorn. Anbal Fernandes, s/n — Cidade Universitria, Recife 50740-560, Brazil

Abstract

Edge detection is a major step in several computer vision applications. Edges define the shape of objects to be used in a recognition system, for example. In this work, we introduce an approach to edge detection inspired by a challenge for artists: the Speed Drawing Challenge. In this challenge, a person is asked to draw the same figure in different times (as 10[Formula: see text]min, 1[Formula: see text]min and 10[Formula: see text]s); at each time, different levels of details are drawn by the artist. In a short time stamp, just the major elements remain. This work proposes a new approach for producing images with different amounts of edges representing different levels of relevance. Our method uses superpixel to suppress image details, followed by Globalized Probability of Boundary (gPb) and Canny edge detection algorithms to create an image containing different number of edges. After that, an edge analysis step detects whose edges are the most relevant for the scene. The results are presented for the BSDS500 dataset and they are compared to other edge and contour detection algorithms by quantitative and qualitative means with very satisfactory results.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3