Illumination Invariance Adaptive Sidewalk Detection Based on Unsupervised Feature Learning

Author:

Zhiyu Wang1,Weili Ding2,Mingkui Wang1

Affiliation:

1. College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China

2. College of Electrical Engineering, Engineering Research, Center of Intelligent Control System and Intelligent Equipment Ministry of Education, Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China

Abstract

To solve the problem of road recognition when the robot is driving on the sidewalk, a novel sidewalk detection algorithm from the first-person perspective is proposed, which is crucial for robot navigation. The algorithm starts from the illumination invariance graph of the sidewalk image, and the sidewalk “seeds” are selected dynamically to get the sidewalk features for unsupervised feature learning. The final sidewalk region will be extracted by multi-threshold adaptive segmentation and connectivity processing. The key innovations of the proposed algorithm are the method of illumination invariance based on PCA and the unsupervised feature learning for sidewalk detection. With the PCA-based illumination invariance, it can calculate the lighting invariance angle dynamically to remove the impact of illumination and different brick colors’ influence on sidewalk detection. Then the sidewalk features are selected dynamically using the parallel geometric structure of the sidewalk, and the confidence region of the sidewalk is obtained through unsupervised feature learning. The proposed method can effectively suppress the effects of shadows and different colored bricks in the sidewalk area. The experimental result proves that the F-measure of the proposed algorithm can reach 93.11% and is at least 7.7% higher than the existing algorithm.

Funder

Key projects of Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3