A Jeap-BiLSTM Neural Network for Action Recognition

Author:

Tan Lunzheng1,Liu Yanfei1,Xia Limin2,Chen Shangsheng3,Zhou Zhanben3

Affiliation:

1. School of Information Engineering, Zhongshan Polytechnic, No. 25 BoAi Road, Zhongshan, Guangdong 528400, P. R. China

2. College of Information Science and Engineering, Central South University, Changsha, Hunan 410075, P. R. China

3. Guangdong Polytechnic Institute, No. 3 Dangui Road, Wugui Mountain Area, Zhongshan City, Guangdong Province, P. R. China

Abstract

Human action recognition in videos is an important task in computer vision with applications in fields such as surveillance, human–computer interaction, and sports analysis. However, it is a challenging task due to the complex background changes and redundancy of long-term video information. In this paper, we propose a novel bi-directional long short-term memory method with attention pooling based on joint motion and difference entropy (JEAP-BiLSTM) to address these challenges. To obtain discriminative features, we introduce a joint entropy map that measures both the entropy of motion and the entropy of change. The Bi-LSTM method is then applied to capture visual and temporal associations in both forward and backward directions, enabling efficient capture of long-term temporal correlation. Furthermore, attention pooling is used to highlight the region of interest and to mitigate the effects of background changes in video information. Experiments on the UCF101 and HMDB51 datasets demonstrate that the proposed JEAP-BiLSTM method achieves recognition rates of 96.4% and 75.2%, respectively, outperforming existing methods. Our proposed method makes significant contributions to the field of human action recognition by effectively capturing both spatial and temporal patterns in videos, addressing background changes, and achieving state-of-the-art performance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3